0.59 - This version may not be safe as it has not been updated for a long time. Find out if your coding project uses this component and get notified of any reported security vulnerabilities with Meterian-X Open Source Security Platform
Maintain your licence declarations and avoid unwanted licences to protect your IP the way you intended.
Artistic-1.0 - Artistic License 1.0List::SomeUtils - Provide the stuff missing in List::Util
version 0.59
# import specific functions
use List::SomeUtils qw( any uniq );
if ( any {/foo/} uniq @has_duplicates ) {
# do stuff
}
# import everything
use List::SomeUtils ':all';
List::SomeUtils provides some trivial but commonly needed functionality on lists which is not going to go into List::Util.
All of the below functions are implementable in only a couple of lines of Perl code. Using the functions from this module however should give slightly better performance as everything is implemented in C. The pure-Perl implementation of these functions only serves as a fallback in case the C portions of this module couldn't be compiled on this machine.
You might wonder why this module exists when we already have List::MoreUtils. In fact, this module is (nearly) the same code as is found in LMU with no significant changes. However, the LMU distribution depends on several modules for configuration (to run the Makefile.PL) that some folks in the Perl community don't think are appropriate for a module high upstream in the CPAN river.
I (Dave Rolsky) don't have a strong opinion on this, but I do like the functions provided by LMU, and I'm tired of getting patches and PRs to remove LMU from my code.
This distribution exists to let me use the functionality I like without having to get into tiring arguments about issues I don't really care about.
Nothing by default. To import all of this module's symbols use the :all
tag.
Otherwise functions can be imported by name as usual:
use List::SomeUtils ':all';
use List::SomeUtils qw{ any firstidx };
Because historical changes to the API might make upgrading List::SomeUtils difficult for some projects, the legacy API is available via special import tags.
There are two schools of thought for how to evaluate a junction on an empty list:
In the first case, the result of the junction applied to the empty list is determined by a mathematical reduction to an identity depending on whether the underlying comparison is "or" or "and". Conceptually:
"any are true" "all are true"
-------------- --------------
2 elements: A || B || 0 A && B && 1
1 element: A || 0 A && 1
0 elements: 0 1
In the second case, three-value logic is desired, in which a junction applied
to an empty list returns undef
rather than true or false
Junctions with a _u
suffix implement three-valued logic. Those without are
boolean.
Returns a true value if all items in LIST meet the criterion given through
BLOCK. Sets $_
for each item in LIST in turn:
print "All values are non-negative"
if all { $_ >= 0 } ($x, $y, $z);
For an empty LIST, all
returns true (i.e. no values failed the condition)
and all_u
returns undef
.
Thus, all_u(@list)
is equivalent to @list ? all(@list) : undef
.
Note: because Perl treats undef
as false, you must check the return value
of all_u
with defined
or you will get the opposite result of what you
expect.
Returns a true value if any item in LIST meets the criterion given through
BLOCK. Sets $_
for each item in LIST in turn:
print "At least one non-negative value"
if any { $_ >= 0 } ($x, $y, $z);
For an empty LIST, any
returns false and any_u
returns undef
.
Thus, any_u(@list)
is equivalent to @list ? any(@list) : undef
.
Logically the negation of any
. Returns a true value if no item in LIST meets
the criterion given through BLOCK. Sets $_
for each item in LIST in turn:
print "No non-negative values"
if none { $_ >= 0 } ($x, $y, $z);
For an empty LIST, none
returns true (i.e. no values failed the condition)
and none_u
returns undef
.
Thus, none_u(@list)
is equivalent to @list ? none(@list) : undef
.
Note: because Perl treats undef
as false, you must check the return value
of none_u
with defined
or you will get the opposite result of what you
expect.
Logically the negation of all
. Returns a true value if not all items in LIST
meet the criterion given through BLOCK. Sets $_
for each item in LIST in
turn:
print "Not all values are non-negative"
if notall { $_ >= 0 } ($x, $y, $z);
For an empty LIST, notall
returns false and notall_u
returns undef
.
Thus, notall_u(@list)
is equivalent to @list ? notall(@list) : undef
.
Returns a true value if precisely one item in LIST meets the criterion given
through BLOCK. Sets $_
for each item in LIST in turn:
print "Precisely one value defined"
if one { defined($_) } @list;
Returns false otherwise.
For an empty LIST, one
returns false and one_u
returns undef
.
The expression one BLOCK LIST
is almost equivalent to 1 == true BLOCK LIST
, except for short-cutting. Evaluation of BLOCK will immediately stop at
the second true value.
Makes a copy of the list and then passes each element from the copy to the
BLOCK. Any changes or assignments to $_
in the BLOCK will only affect the
elements of the new list. However, if $_
is a reference then changes to the
referenced value will be seen in both the original and new list.
This function is similar to map
but will not modify the elements of the
input list:
my @list = (1 .. 4);
my @mult = apply { $_ *= 2 } @list;
print "\@list = @list\n";
print "\@mult = @mult\n";
__END__
@list = 1 2 3 4
@mult = 2 4 6 8
Think of it as syntactic sugar for
for (my @mult = @list) { $_ *= 2 }
Note that you must alter $_
directly inside BLOCK in order for changes to
make effect. New value returned from the BLOCK are ignored:
# @new is identical to @list.
my @new = apply { $_ * 2 } @list;
# @new is different from @list
my @new = apply { $_ =* 2 } @list;
Inserts VALUE after the first item in LIST for which the criterion in BLOCK is
true. Sets $_
for each item in LIST in turn.
my @list = qw/This is a list/;
insert_after { $_ eq "a" } "longer" => @list;
print "@list";
__END__
This is a longer list
Inserts VALUE after the first item in LIST which is equal to STRING.
my @list = qw/This is a list/;
insert_after_string "a", "longer" => @list;
print "@list";
__END__
This is a longer list
Evaluates BLOCK for each pair of elements in ARRAY1 and ARRAY2 and returns a
new list consisting of BLOCK's return values. The two elements are set to $a
and $b
. Note that those two are aliases to the original value so changing
them will modify the input arrays.
@a = (1 .. 5);
@b = (11 .. 15);
@x = pairwise { $a + $b } @a, @b; # returns 12, 14, 16, 18, 20
# mesh with pairwise
@a = qw/a b c/;
@b = qw/1 2 3/;
@x = pairwise { ($a, $b) } @a, @b; # returns a, 1, b, 2, c, 3
Returns a list consisting of the first elements of each array, then the second, then the third, etc, until all arrays are exhausted.
Examples:
@x = qw/a b c d/;
@y = qw/1 2 3 4/;
@z = mesh @x, @y; # returns a, 1, b, 2, c, 3, d, 4
@a = ('x');
@b = ('1', '2');
@c = qw/zip zap zot/;
@d = mesh @a, @b, @c; # x, 1, zip, undef, 2, zap, undef, undef, zot
zip
is an alias for mesh
.
Returns a new list by stripping duplicate values in LIST by comparing the values as hash keys, except that undef is considered separate from ''. The order of elements in the returned list is the same as in LIST. In scalar context, returns the number of unique elements in LIST.
my @x = uniq 1, 1, 2, 2, 3, 5, 3, 4; # returns 1 2 3 5 4
my $x = uniq 1, 1, 2, 2, 3, 5, 3, 4; # returns 5
# returns "Mike", "Michael", "Richard", "Rick"
my @n = distinct "Mike", "Michael", "Richard", "Rick", "Michael", "Rick"
# returns '', undef, 'S1', A5'
my @s = distinct '', undef, 'S1', 'A5'
# returns '', undef, 'S1', A5'
my @w = uniq undef, '', 'S1', 'A5'
distinct
is an alias for uniq
.
RT#49800 can be used to give feedback about this behavior.
Returns a new list by stripping values in LIST occurring more than once by comparing the values as hash keys, except that undef is considered separate from ''. The order of elements in the returned list is the same as in LIST. In scalar context, returns the number of elements occurring only once in LIST.
my @x = singleton 1,1,2,2,3,4,5 # returns 3 4 5
Returns a list of the values of LIST after (and not including) the point where
BLOCK returns a true value. Sets $_
for each element in LIST in turn.
@x = after { $_ % 5 == 0 } (1..9); # returns 6, 7, 8, 9
Same as after
but also includes the element for which BLOCK is true.
Returns a list of values of LIST up to (and not including) the point where
BLOCK returns a true value. Sets $_
for each element in LIST in turn.
Same as before
but also includes the element for which BLOCK is true.
Partitions LIST based on the return value of BLOCK which denotes into which partition the current value is put.
Returns a list of the partitions thusly created. Each partition created is a reference to an array.
my $i = 0;
my @part = part { $i++ % 2 } 1 .. 8; # returns [1, 3, 5, 7], [2, 4, 6, 8]
You can have a sparse list of partitions as well where non-set partitions will be undef:
my @part = part { 2 } 1 .. 10; # returns undef, undef, [ 1 .. 10 ]
Be careful with negative values, though:
my @part = part { -1 } 1 .. 10;
__END__
Modification of non-creatable array value attempted, subscript -1 ...
Negative values are only ok when they refer to a partition previously created:
my @idx = ( 0, 1, -1 );
my $i = 0;
my @part = part { $idx[$i++ % 3] } 1 .. 8; # [1, 4, 7], [2, 3, 5, 6, 8]
Creates an array iterator to return the elements of the list of arrays ARRAY1, ARRAY2 throughout ARRAYn in turn. That is, the first time it is called, it returns the first element of each array. The next time, it returns the second elements. And so on, until all elements are exhausted.
This is useful for looping over more than one array at once:
my $ea = each_array(@a, @b, @c);
while ( my ($a, $b, $c) = $ea->() ) { .... }
The iterator returns the empty list when it reached the end of all arrays.
If the iterator is passed an argument of 'index
', then it returns the index
of the last fetched set of values, as a scalar.
Like each_array, but the arguments are references to arrays, not the plain arrays.
Creates an array iterator, for looping over an array in chunks of $n
items
at a time. (n at a time, get it?). An example is probably a better
explanation than I could give in words.
Example:
my @x = ('a' .. 'g');
my $it = natatime 3, @x;
while (my @vals = $it->())
{
print "@vals\n";
}
This prints
a b c
d e f
g
Performs a binary search on LIST which must be a sorted list of values. BLOCK
must return a negative value if the current element (stored in $_
) is
smaller, a positive value if it is bigger and zero if it matches.
Returns a boolean value in scalar context. In list context, it returns the element if it was found, otherwise the empty list.
Performs a binary search on LIST which must be a sorted list of values. BLOCK
must return a negative value if the current element (stored in $_
) is
smaller, a positive value if it is bigger and zero if it matches.
Returns the index of found element, otherwise -1
.
bsearch_index
is an alias for bsearchidx
.
Returns the first element in LIST for which BLOCK evaluates to true. Each
element of LIST is set to $_
in turn. Returns undef
if no such element
has been found.
first_value
is an alias for firstval
.
Returns the only element in LIST for which BLOCK evaluates to true. Sets $_
for each item in LIST in turn. Returns undef
if no such element has been
found.
only_value
is an alias for onlyval
.
Returns the last value in LIST for which BLOCK evaluates to true. Each element
of LIST is set to $_
in turn. Returns undef
if no such element has been
found.
last_value
is an alias for lastval
.
Returns the result of BLOCK for the first element in LIST for which BLOCK
evaluates to true. Each element of LIST is set to $_
in turn. Returns
undef
if no such element has been found.
first_result
is an alias for firstres
.
Returns the result of BLOCK for the first element in LIST for which BLOCK
evaluates to true. Sets $_
for each item in LIST in turn. Returns undef
if no such element has been found.
only_result
is an alias for onlyres
.
Returns the result of BLOCK for the last element in LIST for which BLOCK
evaluates to true. Each element of LIST is set to $_
in turn. Returns
undef
if no such element has been found.
last_result
is an alias for lastres
.
Evaluates BLOCK for each element in LIST (assigned to $_
) and returns a list
of the indices of those elements for which BLOCK returned a true value. This is
just like grep
only that it returns indices instead of values:
@x = indexes { $_ % 2 == 0 } (1..10); # returns 1, 3, 5, 7, 9
Returns the index of the first element in LIST for which the criterion in BLOCK
is true. Sets $_
for each item in LIST in turn:
my @list = (1, 4, 3, 2, 4, 6);
printf "item with index %i in list is 4", firstidx { $_ == 4 } @list;
__END__
item with index 1 in list is 4
Returns -1
if no such item could be found.
first_index
is an alias for firstidx
.
Returns the index of the only element in LIST for which the criterion in BLOCK
is true. Sets $_
for each item in LIST in turn:
my @list = (1, 3, 4, 3, 2, 4);
printf "unique index of item 2 in list is %i", onlyidx { $_ == 2 } @list;
__END__
unique index of item 2 in list is 4
Returns -1
if either no such item or more than one of these has been found.
only_index
is an alias for onlyidx
.
Returns the index of the last element in LIST for which the criterion in BLOCK
is true. Sets $_
for each item in LIST in turn:
my @list = (1, 4, 3, 2, 4, 6);
printf "item with index %i in list is 4", lastidx { $_ == 4 } @list;
__END__
item with index 4 in list is 4
Returns -1
if no such item could be found.
last_index
is an alias for lastidx
.
Returns the list of values sorted according to the string values returned by the KEYFUNC block or function. A typical use of this may be to sort objects according to the string value of some accessor, such as
sort_by { $_->name } @people
The key function is called in scalar context, being passed each value in turn as both $_ and the only argument in the parameters, @_. The values are then sorted according to string comparisons on the values returned. This is equivalent to
sort { $a->name cmp $b->name } @people
except that it guarantees the name accessor will be executed only once per value. One interesting use-case is to sort strings which may have numbers embedded in them "naturally", rather than lexically.
sort_by { s/(\d+)/sprintf "%09d", $1/eg; $_ } @strings
This sorts strings by generating sort keys which zero-pad the embedded numbers to some level (9 digits in this case), helping to ensure the lexical sort puts them in the correct order.
Similar to sort_by but compares its key values numerically.
Counts the number of elements in LIST for which the criterion in BLOCK is true.
Sets $_
for each item in LIST in turn:
printf "%i item(s) are defined", true { defined($_) } @list;
Counts the number of elements in LIST for which the criterion in BLOCK is
false. Sets $_
for each item in LIST in turn:
printf "%i item(s) are not defined", false { defined($_) } @list;
Calculates the minimum and maximum of LIST and returns a two element list with the first element being the minimum and the second the maximum. Returns the empty list if LIST was empty.
The minmax
algorithm differs from a naive iteration over the list where each
element is compared to two values being the so far calculated min and max value
in that it only requires 3n/2 - 2 comparisons. Thus it is the most efficient
possible algorithm.
However, the Perl implementation of it has some overhead simply due to the fact
that there are more lines of Perl code involved. Therefore, LIST needs to be
fairly big in order for minmax
to win over a naive implementation. This
limitation does not apply to the XS version.
Calculates the most common items in the list and returns them as a list. This is effectively done by string comparisons, so references will be stringified. If they implement string overloading, this will be used.
If more than one item appears the same number of times in the list, all such items will be returned. For example, the mode of a unique list is the list itself.
This function returns a list in list context. In scalar context it returns a count indicating the number of modes in the list.
The maintenance goal is to preserve the documented semantics of the API; bug fixes that bring actual behavior in line with semantics are allowed. New API functions may be added over time. If a backwards incompatible change is unavoidable, we will attempt to provide support for the legacy API using the same export tag mechanism currently in place.
This module attempts to use few non-core dependencies. Non-core configuration and testing modules will be bundled when reasonable; run-time dependencies will be added only if they deliver substantial benefit.
There is a problem with a bug in 5.6.x perls. It is a syntax error to write things like:
my @x = apply { s/foo/bar/ } qw{ foo bar baz };
It has to be written as either
my @x = apply { s/foo/bar/ } 'foo', 'bar', 'baz';
or
my @x = apply { s/foo/bar/ } my @dummy = qw/foo bar baz/;
Perl 5.5.x and Perl 5.8.x don't suffer from this limitation.
If you have a functionality that you could imagine being in this module, please drop me a line. This module's policy will be less strict than List::Util's when it comes to additions as it isn't a core module.
When you report bugs, it would be nice if you could additionally give me the
output of your program with the environment variable LIST_MOREUTILS_PP
set
to a true value. That way I know where to look for the problem (in XS,
pure-Perl or possibly both).
Credits go to a number of people: Steve Purkis for giving me namespace advice and James Keenan and Terrence Branno for their effort of keeping the CPAN tidier by making List::Util obsolete.
Brian McCauley suggested the inclusion of apply() and provided the pure-Perl implementation for it.
Eric J. Roode asked me to add all functions from his module List::SomeUtil
into this one. With minor modifications, the pure-Perl implementations of those
are by him.
The bunch of people who almost immediately pointed out the many problems with the glitchy 0.07 release (Slaven Rezic, Ron Savage, CPAN testers).
A particularly nasty memory leak was spotted by Thomas A. Lowery.
Lars Thegler made me aware of problems with older Perl versions.
Anno Siegel de-orphaned each_arrayref().
David Filmer made me aware of a problem in each_arrayref that could ultimately lead to a segfault.
Ricardo Signes suggested the inclusion of part() and provided the Perl-implementation.
Robin Huston kindly fixed a bug in perl's MULTICALL API to make the XS-implementation of part() work.
Credits goes to all people contributing feedback during the v0.400 development releases.
Special thanks goes to David Golden who spent a lot of effort to develop a design to support current state of CPAN as well as ancient software somewhere in the dark. He also contributed a lot of patches to refactor the API frontend to welcome any user of List::SomeUtils - from ancient past to recently last used.
Toby Inkster provided a lot of useful feedback for sane importer code and was a nice sounding board for API discussions.
Peter Rabbitson provided a sane git repository setup containing entire package history.
A pile of requests from other people is still pending further processing in my mailbox. This includes:
List::Util export pass-through
Allow List::SomeUtils to pass-through the regular List::Util functions to
end users only need to use
the one module.
uniq_by(&@)
Use code-reference to extract a key based on which the uniqueness is determined. Suggested by Aaron Crane.
delete_index
random_item
random_item_delete_index
list_diff_hash
list_diff_inboth
list_diff_infirst
list_diff_insecond
These were all suggested by Dan Muey.
listify
Always return a flat list when either a simple scalar value was passed or an array-reference. Suggested by Mark Summersault.
List::Util, List::AllUtils, List::UtilsBy
Some parts copyright 2011 Aaron Crane.
Copyright 2004 - 2010 by Tassilo von Parseval
Copyright 2013 - 2015 by Jens Rehsack
Bugs may be submitted at https://github.com/houseabsolute/List-SomeUtils/issues.
The source code repository for List-SomeUtils can be found at https://github.com/houseabsolute/List-SomeUtils.
If you'd like to thank me for the work I've done on this module, please consider making a "donation" to me via PayPal. I spend a lot of free time creating free software, and would appreciate any support you'd care to offer.
Please note that I am not suggesting that you must do this in order for me to continue working on this particular software. I will continue to do so, inasmuch as I have in the past, for as long as it interests me.
Similarly, a donation made in this way will probably not make me work on this software much more, unless I get so many donations that I can consider working on free software full time (let's all have a chuckle at that together).
To donate, log into PayPal and send money to autarch@urth.org, or use the button at https://houseabsolute.com/foss-donations/.
This software is copyright (c) 2022 by Dave Rolsky autarch@urth.org.
This is free software; you can redistribute it and/or modify it under the same terms as the Perl 5 programming language system itself.
The full text of the license can be found in the
LICENSE
file included with this distribution.